

Transformational Energy Storage for Planes, Trains and Ships

Dr. Halle Cheeseman, ARPA-E Program Director

May 10, 2023

Transformational Energy Storage for Planes, Trains & Ships

ARPA-E Mission: Energy Efficiency, Energy Independence & Lower Emissions.

- Energy Resilience & Nuclear Waste Management.
- Focused Program: Frame a Problem, Identify Metrics, Solicit Solutions
- OFF Roadmap Transformational, High Risk & Further Out

Purpose of a Workshop:

- ✓ To hear from Industry Experts
- ✓ To build a community
- ✓ To define the White Space
- ✓ To discuss possible program metrics
- ✓ Scope is Non-hydrocarbon.

ARPA-E Programs are bold and ambitious - EVs4ALL, \$42MM

i) Very Fast Charging for the 37% of Americans who will not have access to home charging

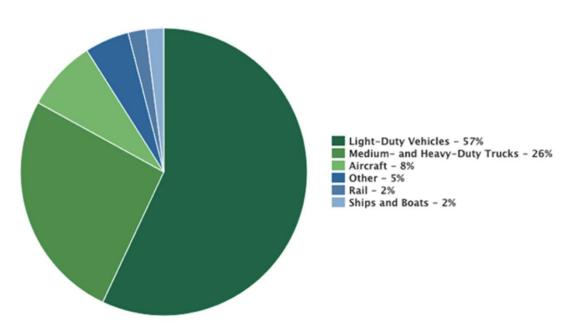
ii) Improved low temperature performance for the Americans who live in Northern States

Cut low temperature battery performance losses in half

Small Vehicles >200Wh/kg 5 minute charging

Large Vehicles >400Wh/kg 15 minute Charging

- iii) Better Affordability for New Vehicles with Abundant Materials & Range Retention for Used Vehicles.
 - <\$75/kWh versus SOA \$120/kWh</p>
 - Cut battery degradation losses in half

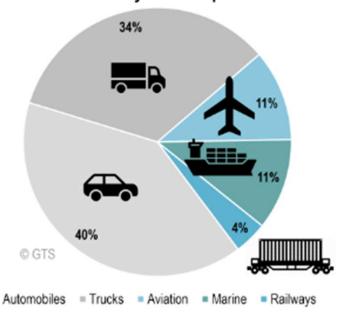


New Technologies must be Safety Assured & de-risked upfront

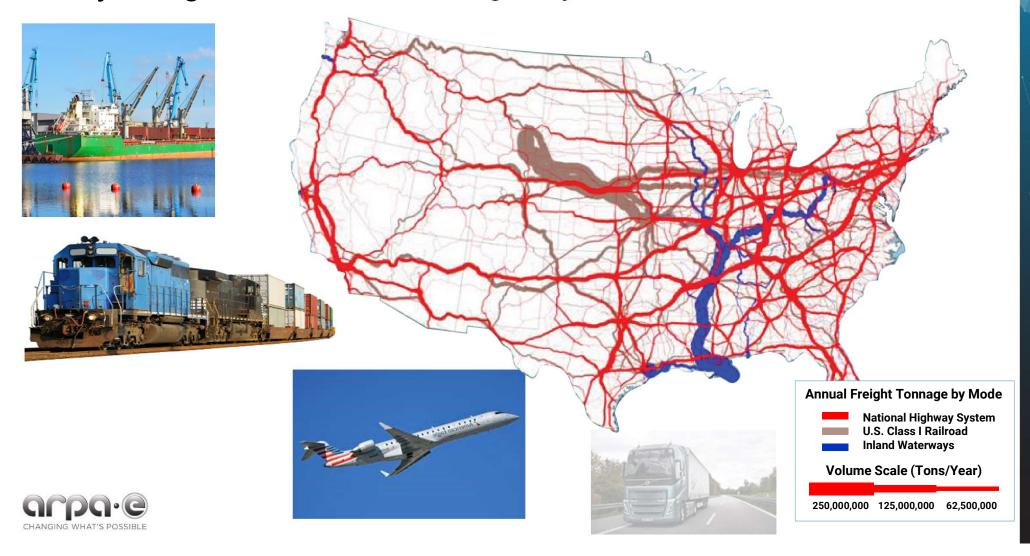
Battery 1K starts with the Vision of Eliminating GHGs

Planes, Trains & Ships account for 200 million tons of CO₂ emissions in the US & 1.8 billion tons globally (Annual).

2020 U.S. Transportation Sector GHG Emissions by Source



Transportation accounts for 27% US Emissions (Ref: EPA)


Global emissions properly consider shipping

CO2 Emissions by the Transport Sector

Geography of Transport Systems 2014

Heavy Usage, Fast Refuel, Longevity & Robustness

Why is Electric interesting?

Truly Zero Emissions (w/zero carbon based electricity)

Reduce Noise Pollution

- Take-off plane noise is particularly egregious

Energy infrastructure already in-place globally (Electricity)*

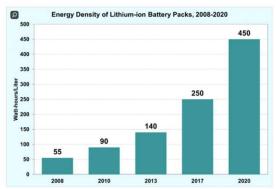
- Although charging will be challenging for larger applications

Potentially more Energy Efficient & Economical

 Electricity cheaper than fuels and have more price stability (1/3rd OPEX cost), Less maintenance?

Could enable new business platforms & Operations

- smaller airports, reduce hub and spoke, higher altitude(less friction)
- Autonomous, smaller trains (Potential for platooning)
- Autonomous coastal ships & freighters



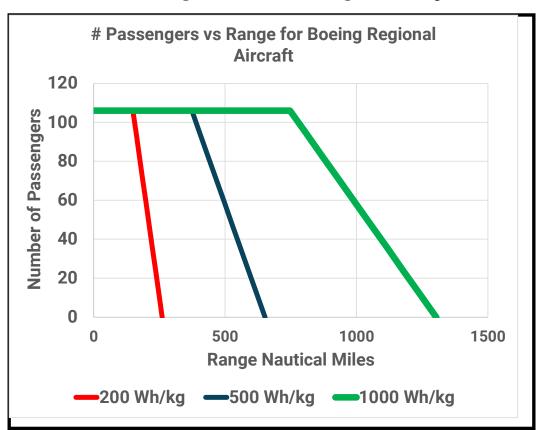
We are targeting Fossil Fuel Free Electrification of Planes, Trains and Ships

- √ They are Workhorses operating >16 hours per day and >20 years
- ✓ Idleness = lost revenue
- √ They each need a Transformational Energy Storage Solution(s)

Since May 2022 we have learnt:

- Battery 1K should be ESS 1K
- 1K is net & EOL
- 1K could be Wh/Kg or Wh/L
- 1K could be 1000 miles
- 1K could be 1000 weeks Life
- 1K could be 1000 seconds Refuel
- 5K could be 5kW/Kg for a power option

Muralidharan et al, Adv. Energy Mats, January 2022


E.G. 1000Wh/L for the battery = 40MWh for a 40ft container 2/3 full

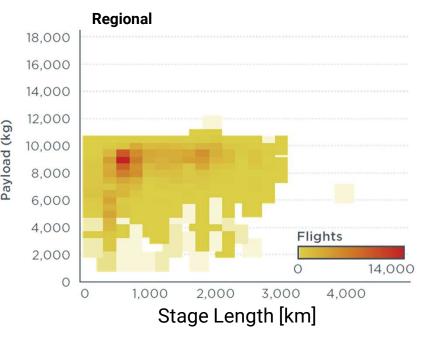
1,000 Wh/Kg makes regional jet electrification possible

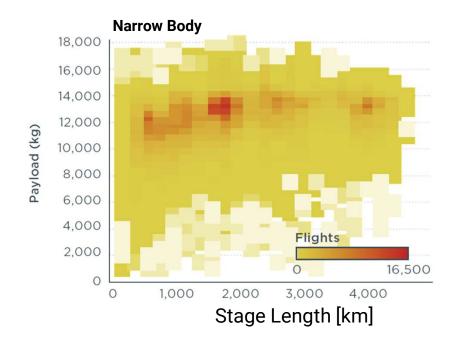
700 NM radius circles centered on Denver & Chicago

Assumptions: eta 83.7%, L/D = 25, Reserve = 19%

Reference ARPA-E Summit, Denver May 2023

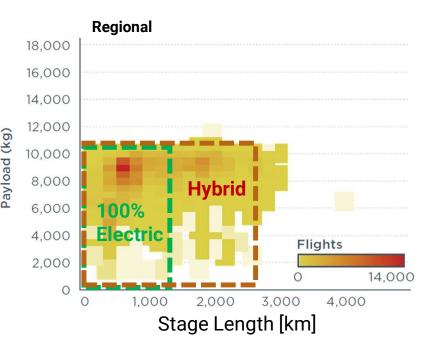
Lots of Electric/Hybrid activity in Planes – and challenges to solve

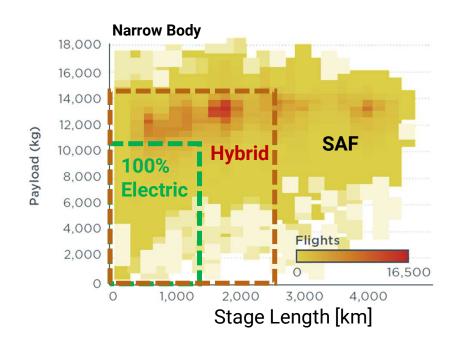

- Capacity Retention cycles & years
- EOL = 1K not BOL
- 1K = Battery, BMS, Thermal management etc
- Quick Recharge/refuel Times
- Total Cost of Ownership (TCO)
- LCA & the Circular Economy
- Power for take-off (@ low SOC)
- Energy for Reserve
- Landing weight not less than take-off weight
- AND UNCOMPROMISING SAFETY



Typical operations by aircraft type - Regional & Single Aisle

U.S. Domestic and international (to and from the United States)





A Vision of the possibilities....

U.S. Domestic and international (to and from the United States)

Electric = Battery 1K; Hybrid = Battery(1/2K & 5kW/Kg) + H₂ (2kWh/Kg) - Fuel Cell; SAF = Synthetic Fuel

Railroads: An industry already working the Problem

PRESENT THIS DOCUMENT FOR BOARDING

RESERVATION NUMBER 527F8C

RES# 527F8C-17APR23

NHV New Haven, CT

WAS

Washington, DO

One-Way

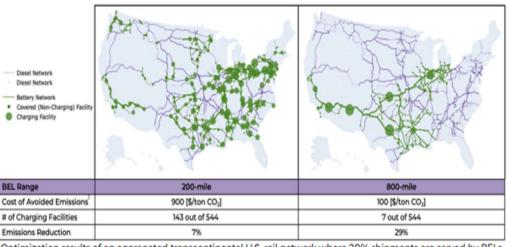
APRIL 30, 2023

"Congratulations on reducing your carbon footprint. This train will produce 83% less greenhouse gas emissions than if you drive (saving 188.52lbs of CO_2e) and 72% less than if you fly (saving 48.8lbs of CO_2e)"

Congratulations on reducing your carbon footprint. This train trip will produce 83% less greenhouse gas emissions than if you drive (saving 188.52 lbs of CO2e) and 72% less than if you fly (saving 48.80 lbs of CO2e).

Wabtec FLXDrive: Locomotive #3000

FLX SPECS	FLXdrive 2.0
No. of axles	6
Wheel Arrangement	CoCo
Number of cabs	1
Max Battery Capacity (MWh)	8.5
Traction power (MW)	3.2
STE (kN)	890
Weight (tons)	196


Credit: Wabtec

BEL (Battery Electric Locomotive) – Range & Charge/Refuel Time are everything!

Cross Country US Freight

Optimization results of an aggregated transcontinental U.S. rail network where 20% shipments are served by BELs.

From Kansas to Los Angeles – 1,740 miles, 75 wagons total

	MWh size	# Battery wagons
SOA Battery no charging	280MWh	45
SOA Battery 3 fast refuels	48MWh	8
Battery 1K no charging	<200MWh	<6
Battery 1K 3 fast refuels	<48MWh	<2

Taken & adapted from Zenith et al, SAGE Journal: Vol 234, Issue 7, August 2019

Ref. NUFRIEND Insights-Range

Electric Ferry Plans are starting to get interesting

The world's largest electric ferry can take you and your closest 2000 friends across the ocean

Peter Johnson | Jan 17 2023 - 3:17 pm PT | 🗐 46 Comments

Electrek.co

"100 nautical miles is a rather smallish ocean"
Andreas Thaler Comment

- Incat Tasmania; Operator Buquebus
- Delivery planned in 2025
- 148 meter long
- 2 electric motors (5-9.6MW)
- 2,100 passengers and 226 vehicles
- 25 knots max
- Max range 100nm
- Travel between Argentina & Uruguay
- 500 tons of equipment & tanks replaced with 400 tons of batteries
- Aluminum vessel not steel

Battery 1K could be a good solution for short haul container ships

Yara Birkeland - Specifications

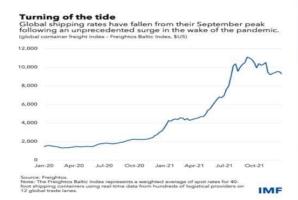
- Autonomous Battery Driven Container Vessel
 - 80 meters x 15 meters; dead weight 3,120MT
- Replaces 100 Diesel Trucks/day
- Capacity: 120 TEUs
- Propulsion System: 2 x 900kW Azipull pods
- 6.7MWh Battery Pack (Leclanche)
 - 20 strings x 51 modules x 32 cells = 32,640
 - 8,000 cycles to 80% initial capacity
- One way maximum expected mission: 30NM
- Maximum speed 13 knots (ECO 7knots)

Yara Birkeland All-Electric container ship – maiden voyage 11/2021

Credit: Maritime Executive

Shipping has significant differences to Rail and Aviation

Ships are a very diverse category



- Biggest Emissions opportunity Ocean container ships
 - Total Energy Required a showstopper for all electric?
- While cost may be paramount price is more "Elastic"!
 - The Bottom Line: What is important to you!

- Turnaround time is longer than planes or trains: 0.3 days Japan; 1 day New York*
- Volumetric Energy Density may be more important than gravimetric
 E.g#. 1,000TEU vessel, 10,000 KM Range. 470Wh/L = 35% volume, 1200Wh/L = 12%
- Legislation and/or other value added innovation may drive the change needed.
- Fuel Cells and/or Hybrids for sure will have a part to play

There is no shortage of applications enabled or helped by Battery 1K

Full Battery Electric

Enabler for Hybrid

Critical Range Extender

Some merit

Battery 1K How? Unthink what a Battery is?

Actives + Non-Active => electrodes => Cells + Pack hardware => Battery Pack => Big Box

......And/Or Think Backwards

Fossil Fuels versus Battery Materials....an intriguing comparison

Jet Fuel 12kWh/Kg

0 Kg

Lithium 11.1kWh/Kg

 $Li_2O = 5.2kWh/Kg$.

Aluminum 8.4kWh/Kg

 $Al_2O_3 = 4.3kWh/Kg$

Magnesium 6.1kWh/Kg

MgO = 2.8kWh/Kg

Zinc 1.35kWh/Kg

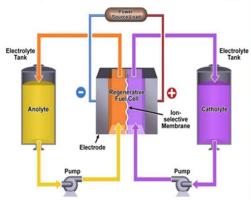
ZnO = 1.1kWh/Kg

1kWh/Kg vs Theoretical

How do we package these metals to deliver 1000Wh/Kg

7 Strategies for Transformational Electrochemical Energy Storage

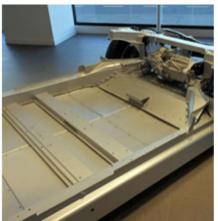
Mechanically..... or Externally Rechargeable



Credit: Electric Fuel - Zinc Air System Power Sources Symposium

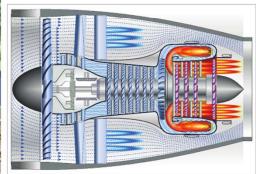
(Swappable) Energy Box

Separate Power/Energy

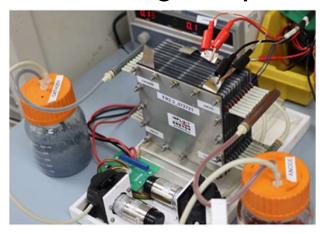


Credit: DOE/PNNL

External Catholytes


Gantrify

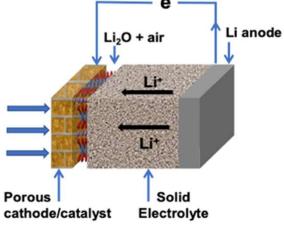
Revisit the Past

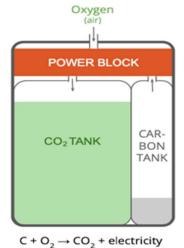


Run at High Temperatures

Unleashing the potential – Examples of think differently

Electro-active pumpable slurries (Credit: Influit Energy)


Aluminum Mechanically Recharged (Credit: L3 Harris) Molten/High temperature liquid batteries: (Credit: Ambri)



Solid State Batteries (Credit: Mohammad Asadi - Illinois Institute of Technology)

Revisit Primaries

Carbon Dioxide Battery (Credit: NOON Energy)

ESS-1 Solutions have many considerations, For Example

Uncompromised Safety

- ✓ Range Retention
- Energy Density
- Fast Turn Around Time
 - ✓ ✓ Pumpable, electroactive materials
 - ✓ Mechanically Rechargeable
 - ✓ Swappable Batteries (Energy Box)
 - ✓ ✓ Fuel Cells/Battery-FC Hybrids
 - ✓ ✓ On-board charging
 - ✓ Separation of Reserve vs Operation

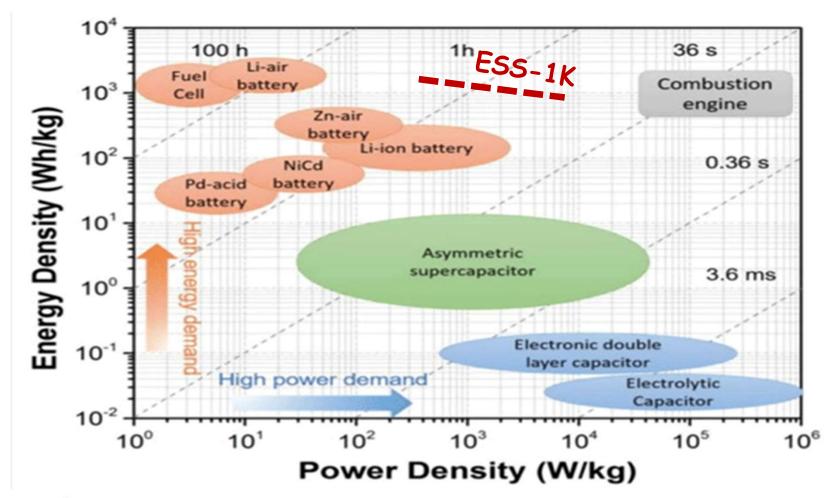
ESS-1 Solutions have many considerations, For Example

Uncompromised Safety

- ✓ Early Characterization
- ✓ Shut-down/safety-catch mechanisms
- ✓ Non flammable/non toxic solvents
- ✓ No thermal runaway reactions
- ✓ Internal Hard Short Proof
- ✓ Prevention & Mitigation strategies
- ✓ Extensive Proving in Trucks

Energy Density

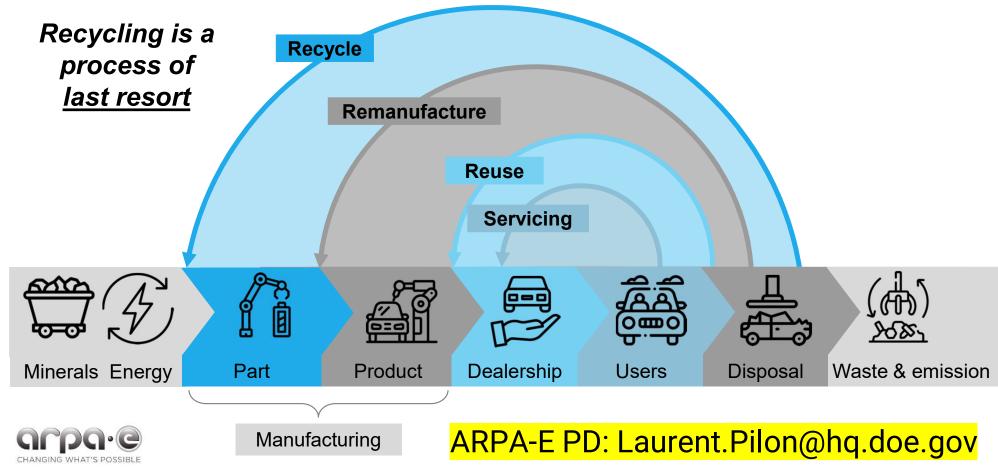
- ✓ Light Weight Anode Materials
- ✓ External catholytes
- ✓ Combine Electrochemical Function w/mechanical structure
- ✓ Bipolar enabled designs
- ✓ Binderless designs


Range Retention

- ✓ Low expansion/compression
- ✓ High Faradaic Efficiency
- ✓ Low/fixed/Impedance designs/ architectures/interfaces/connects
- ✓ Low Activation Energy Kinetics
- ✓ No dendrites/shape change
- ✓ Iso-thermal designs

Fast Turn Around Time

- ✓ Pumpable, electroactive materials
- ✓ Mechanically Rechargeable
- ✓ Swappable Batteries (Energy Box)
- ✓ Fuel Cells/Battery-FC Hybrids
- ✓ On-board charging
- ✓ Separation of Reserve vs Operation



Ragone Reference: Shao et al, Design & mechanisms of Asymmetric Supercapacitors, Chem Rev. (2018)

Circularity is more than recycling... it helps recover manufacturing value!

Energy Storage 1K: The culmination of much work into a bold program

KICK-OFF: What if?

40+ Organizations: Applications/solutions

PART II: How might we?

NASA-VTO Aviation Workshop 4/25/23

ESS – 1K Workshop May 10th & 11th in DC

- ✓ Speakers Aviation, Railroads, Maritime
- ✓ Panels Aviation, Railroads, Maritime
- ✓ Technology Innovation Blast x 20
- ✓ Breakout Groups
 - Applications-Solutions alignment
 - Prioritizing metrics

Possible Program

