

Advanced Research Projects Agency–Energy Annual Report for FY 2016

Report to Congress <u>September 2</u>017

> United States Department of Energy Washington, DC 20585

Message from the Acting Director

The Advanced Research Projects Agency-Energy (ARPA-E) maintains a dynamic funding portfolio in which roughly one third of programs turn over annually. ARPA-E supports project teams whose technologies advance the boundaries of science and provides them with the strategic guidance necessary to effectively prepare for the deployment of their technologies.

In Fiscal Year 2016, we continued developing our diverse portfolio of advanced energy technologies. We issued seven Funding Opportunity Announcements (FOAs) including one to utilize on-board or cloudbased sensors, data and computational capabilities to make cars and trucks more energy efficient (NEXTCAR) and another to double datacenter efficiency as our economy becomes increasingly digitized (ENLITENED). Moreover, we announced projects ranging from developing realistic, open-access models and data repositories to aid in improving the U.S. electric grid (GRID DATA) to paving the way for technologies that overcome the limitations of current battery and fuel cell products (IONICS).

Pursuant to statutory requirements, this report is being provided to the following Members of Congress:

- The Honorable Lisa Murkowski Chairwoman, Senate Committee on Energy and Natural Resources
- The Honorable Maria Cantwell Ranking Member, Senate Committee on Energy and Natural Resources
- The Honorable Cory Gardner Chairman, Senate Subcommittee on Energy Committee on Energy and Natural Resources
- The Honorable Joe Manchin III Ranking Member, Senate Subcommittee on Energy Committee on Energy and Natural Resources
- The Honorable Greg Walden Chairman, House Committee on Energy and Commerce
- The Honorable Frank Pallone, Jr. Ranking Member, House Committee on Energy and Commerce
- The Honorable Lamar Smith Chairman, House Committee on Science, Space and Technology
- The Honorable Eddie Bernice Johnson Ranking Member, House Committee on Science, Space and Technology
- The Honorable Randy Weber Chairman, House Subcommittee on Energy Committee on Science, Space and Technology
- The Honorable Marc Veasey Ranking Member, House Subcommittee on Energy Committee on Science, Space and Technology

Department of Energy | September 2017

- The Honorable Thad Cochran Chairman, Senate Committee on Appropriations
- The Honorable Patrick Leahy Vice Chairman, Senate Committee on Appropriations
- The Honorable Lamar Alexander Chairman, Senate Subcommittee on Energy and Water Development Committee on Appropriations
- The Honorable Dianne Feinstein Ranking Member, Senate Subcommittee on Energy and Water Development Committee on Appropriations
- The Honorable Rodney Frelinghuysen Chairman, House Committee on Appropriations
- The Honorable Nita Lowey Ranking Member, House Committee on Appropriations
- The Honorable Mike Simpson Chairman, House Subcommittee on Energy and Water Development Committee on Appropriations
- The Honorable Marcy Kaptur Ranking Member, House Subcommittee on Energy and Water Development Committee on Appropriations

If you have any questions or need additional information, please contact me or Ms. Shari Davenport, Acting Assistant Secretary for Congressional and Intergovernmental Affairs, at (202) 586-5450.

Sincerely,

Sin a. hur:

Dr. Eric Rohlfing Acting Director Advanced Research Projects Agency-Energy

Executive Summary

The Advanced Research Projects Agency-Energy (ARPA-E) invests in technologies that could change the way we use, generate, and store energy. ARPA-E's mission is to advance energy innovations that will create a more secure, affordable, and sustainable American energy future.

ARPA-E creates options for new paths that accelerate the pace of innovation. These developments help our country by:

- Reducing its dependence on energy imports;
- Reducing energy related emissions;
- Improving energy efficiency across all sectors of the economy; and

• Ensuring it maintains a technological lead in developing and deploying advanced energy technologies.

ARPA-E provides America's energy researchers with funding support, technical assistance, and commercialization guidance. This report presents a summary of the activities of ARPA-E during Fiscal Year 2016 (FY 2016).

In FY 2016¹, ARPA-E selected projects for seven programs covering a broad array of energy technologies:

- \$7 million under the Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) program for developing generator technologies that will enable more affordable and efficient residential Combined Heat and Power (CHP) systems (GENSETS SBIR/STTR);
- \$125 million for the Agency's third open solicitation (OPEN 2015);
- \$33 million for technologies that coordinate load and generation on the grid to create a virtual energy storage system (NODES);
- \$11 million for realistic, open-access models and data repositories to aid in improving the U.S. electric grid (GRID DATA);
- \$31 million to develop innovative materials that will improve the energy efficiency of existing single-pane windows in commercial and residential buildings (SHIELD);

¹ The GENSETS SBIR/STTR, OPEN 2015, NODES, and GRID DATA FOAs were released in FY2015, with project selections announced in FY2016. The SHIELD, MONITOR Test Site, and IONICS FOAs were released in FY2016, with project selections also announced in FY2016. Funding levels shown on pages iii-9 (inclusive) are as of each program's Project Selection Announcement. The final number of projects and funding amounts are subject to change based on award negotiations and ongoing program management (see Table 2 of this report for updated data on each program).

- \$3.5 million to build and operate a testing facility for ARPA-E's MONITOR project teams (MONITOR Test Site)
- \$37 million for developing new processing methods and approaches to device integration to accelerate devices built with high performance ion-conducting solids to commercial deployment (IONICS);

ARPA-E released four additional funding opportunities in FY 2016 with project selections that were ultimately announced in FY 2017:

- \$34 million to create new control technologies that reduce the energy consumption of future vehicles by using connectivity and vehicle automation (NEXTCAR);
- \$33 million to develop technologies that use renewable energy to convert air and water into cost-competitive liquid fuels (REFUEL);
- \$35 million for technologies that develop new crop breeding approaches for improved root and soil function that will help plants to store more carbon in the ground and take up nutrients and water more efficiently (ROOTS);
- \$25 million for creating innovative components to increase the energy efficiency of datacenters (ENLITENED).

ARPA-E also continued the use of a rolling open solicitation to quickly support innovative applied energy research that has the potential to lead to new focused programs.

In addition to these new programs, ARPA-E hosted the seventh annual Energy Innovation Summit from February 29 to March 2, 2016. The Summit brought together leaders from academia, government, and business to discuss the foremost energy issues, showcase the latest technology innovations, and cultivate relationships to help advance cutting-edge technologies to market. The event drew over 2,000 attendees and featured over 80 speakers and keynote addresses. At the Summit, ARPA-E announced that 36 project teams have formed new companies, 60 projects have partnered with other government agencies for further development and an ever increasing number of technologies have already been incorporated into products that are being sold in the market. Additionally, 45 ARPA-E project teams have attracted more than \$1.25 billion in private-sector follow-on funding.

In FY 2016, ARPA-E continued to focus on providing awardees with practical training and critical business information as part of the Agency's Technology-to-Market program. This support equips projects with a clear understanding of market needs to guide technical development and help projects succeed in the marketplace.

ARPA-E ANNUAL REPORT FOR FISCAL YEAR 2016

Table of Contents

I.	Legislative Language	1
II.	Fiscal Year 2016 Appropriation	1
III.	Funding Opportunity Announcements (FOAs)	1
IV.	ARPA-E Energy Innovation Summit	11
V.	Conclusion	12
VI.	Appendix I: Projects Selected in FY 2016	14

I. Legislative Language

This report is in response to the requirements set forth in the America COMPETES Act, Public Law 110-69, section 5012(g)(1)(2007) as amended, which has been codified as 42 U.S.C. § 16538(h)(1), wherein it is stated:

"...the Director shall provide to the relevant authorizing and appropriations committees of Congress a report describing projects supported by ARPA-E during the previous fiscal year."

ARPA-E focuses on energy technologies that can be meaningfully advanced with a modest investment over a defined period of time. ARPA-E's rigorous program design, competitive project selection process, and hands-on engagement, provide America's energy researchers with funding, technical assistance, and market awareness. In FY 2016, ARPA-E thoroughly reviewed all applications and technologies to ensure that investments are made in areas not currently undertaken by industry or other DOE applied research and development investment.

II. Fiscal Year 2016 Appropriation

The Consolidated Appropriations Act of 2016 (P.L. 114-113) included \$291 million in FY 2016 funds for ARPA-E.

III. Funding Opportunity Announcements (FOAs)

In FY 2016, ARPA-E released seven Funding Opportunity Announcements (FOA). Six FOAs were designed to advance innovative energy technologies in specific program areas; one FOA was created to develop a testing facility for ARPA-E's MONITOR projects.

Project selections for three of these FOAs, as well as four FOAs released in FY 2015, were announced in FY 2016. Selections for four FY 2016 FOAs were announced in FY 2017. The focused technology programs created by these solicitations provide a unique bridge from basic science to early stage technology. They draw from the latest scientific discoveries and will help create a viable path to commercial implementation through firm grounding in the economic realities and changing dynamics of the marketplace.

]	TABLE 1: Summary of ARPA-E FOAs Released and/or Awarded in FY 2016 ²						
Program	Project Selection	Project Selection FY	FOA Issuance	FOA Issuance FY	NUMBER OF PROJECTS	FUNDING AMOUNT (\$ Million) ²	
ENLITENED	1/24/2017	FY 2017	6/10/2016	FY 2016	9	\$25	
ROOTS	12/15/2016	FY 2017	4/12/2016	FY 2016	10	\$35	
REFUEL	12/15/2016	FY 2017	4/26/2016	FY 2016	16	\$35	
NEXTCAR	11/2/2016	FY 2017	4/12/2016	FY 2016	11	\$34	
IONICS	9/13/2016	FY 2016	2/26/2016	FY 2016	16	\$37	
MONITOR Field Test Site	6/10/2016	FY 2016	2/26/2016	FY 2016	1	\$3.5	
SHIELD	5/18/2016	FY 2016	10/7/2015	FY 2016	14	\$31	
GRID DATA	1/15/2016	FY 2016	6/18/2015	FY 2015	7	\$11	
NODES	12/11/2015	FY 2016	2/5/2015	FY 2015	12	\$33	
OPEN 2015	11/23/2015	FY 2016	1/7/2015	FY 2015	41	\$125	
GENSETS SBIR/STTR	10/7/2015	FY 2016	7/16/2015	FY 2015	3	\$7	
	Tota	al (Projects Selec	cted)		140	\$376.5	

Summary of FY 2016 Project Selections

NGING WHAT'S F

In FY 2016, selections were announced for 94 projects across seven technology programs:

- On October 7, 2015, ARPA-E announced that three projects were selected to receive \$7 million for **GENSETS SBIR/STTR** (*Generators for Small Electrical and Thermal Systems Small Business Innovation Research and Small Business Technology Transfer*)
- On November 23, 2015, ARPA-E announced that 41 projects were selected to receive \$125 million for **OPEN 2015**.
- On December 11, 2015, ARPA-E announced that 12 projects were selected to receive \$33 million for **NODES** (*Network Optimized Distributed Energy Systems*).
- On January 15, 2016, ARPA-E announced seven projects were selected to receive \$11 million for **GRID DATA** (*Generating Realistic Information for the Development of Distribution and Transmission Algorithms*).
- On May 18, 2016, ARPA-E announced 14 projects were selected to receive \$31 million for **SHIELD** (*Single-Pane Highly Insulating Efficient Lucid Designs*).

² Funding levels shown in this chart are as of each program's Project Selection Announcement. The final number of projects and final funding amounts are subject to change based on award negotiations and ongoing program management (see Table 2 of this report for updated data on each program).

- On June 10, 2016, ARPA-E announced one project was selected to receive \$3.5 million for the **MONITOR Field Test Site Program**.
- On September 13, 2016 ARPA-E announced 16 projects were selected to receive \$37 million for **IONICS** (*Integration and Optimization of Novel Ion-Conducting Solids*).

Throughout FY 2016, ARPA-E continued utilizing **IDEAS** (*Innovative Development in Energy-Related Applied Science*), a rolling open solicitation that allows ARPA-E to quickly support innovative applied energy research that has the potential to lead to new focused programs. **Summary of FY 2017 Project Selections for FOAs Announced in FY 2016**

In FY 2016 ARPA-E also issued solicitations for four programs with project selections announced in FY 2017:

- On November 2, 2016, ARPA-E announced 11 projects were selected to receive \$34 million for **NEXTCAR** (*Next-Generation Energy Technologies for Connected and Automated On-Road Vehicles*). The FOA was issued on April 12, 2016.
- On December 15, 2016, ARPA-E announced 26 projects were selected to receive \$70 million: \$35 million for ROOTS (*Rhizosphere Observations Optimizing Terrestrial Sequestration*) and \$35 million for REFUEL (*Renewable Energy to Fuels through Utilization of Energy-dense Liquids*). The FOAs were issued on April 12 and April 26, 2016 respectively.
- On January 24, 2017 ARPA-E selected 9 projects to receive \$25 million for ENLITENED (*Energy Efficient Light-Wave Integrated Technology Enabling Networks That Enhance Datacenters*). The FOA was issued on June 10, 2016.

Details on the FY 2016 Project Selections

The details of the focused programs with project selections announced during FY 2016 are:³

- GENSETS: Generators for Small Electrical and Thermal Systems SBIR/STTR (\$7 million)
 - ARPA-E announced three new projects under the SBIR and STTR program. These SBIR/STTR projects are part of the GENSETS program which aims to develop transformative generator technologies to enable widespread deployment of residential CHP systems. These small, natural gas-fueled systems can fulfill most of a U.S. household's electricity and hot water needs, and if widely used

³ Project counts and funding amounts on pages iii-9 (inclusive) reflect information at the time of the project Selection Announcement. The final number of projects and final funding amounts are subject to change based on contract negotiations and ongoing program management (see Table 2 of this report for updated data on each program).

could increase the overall efficiency of power generation in the United States, and reduce greenhouse gas emissions.

Example GENSETS SBIR/STTR Project: Sencera Energy, Inc. – "Kinematic Flexure-Based Stirling-Brayton Hybrid Engine Generator for Residential CHP" – Charlotte, NC (\$1.7 million). Sencera Energy, Inc., will develop a novel kinematic Stirling-Brayton hybrid engine using flexure based volume displacement in lieu of conventional displacer and power pistons. The flexure-based design achieves the same function as a piston-cylinder set by simply changing the volume of the working spaces, as opposed to sliding a piston along the interior of a cylinder. The removal of pistons from the design eliminates the need for sliding seals such as piston rings or air/gas bearings, resulting in lower engine friction and fluid flow losses. It also potentially lowers the fabrication cost compared to other heat engines. The proposed kinematic engine design provides easy coupling to existing rotary alternator design, which allows the use of robust and mature off-the-shelf alternator technologies and controllers.

• NODES: Network Optimized Distributed Energy Systems (\$33 million)

- The NODES program aspires to enable renewables penetration at the 50% level or greater, by developing transformational grid management and control methods to create a virtual energy storage system based on use of flexible load and distributed energy resources (DERs). The challenge is to cost-effectively and reliably manage dynamic changes in the grid by leveraging these additional grid resources, while maintaining customer quality of service. The expected benefits include reduced periods of costly peak demand, reduced energy waste, and increased penetration of renewable energy production. The NODES Program will bring together different scientific communities such as power systems, control systems, computer science, and distributed systems to accelerate the development of new technologies enabling active control of load and DERs in coordination with the grid.
- Example NODES Project: The University of Vermont "Packetized Energy Management: Coordinating Transmission and Distribution" – Burlington, VT (\$1.5 million). The University of Vermont (UVM) will develop and test a new approach for demand-side management called packetized energy management (PEM) that builds on approaches used to manage data in communication networks without centralized control and requires a high level of privacy. The PEM system will allow millions of small end-use devices to cooperatively balance energy supply and demand in real time without jeopardizing the reliability of the grid or the quality of service to consumers. The project will develop the PEM method to manage large, rapid fluctuations associated with renewable power generation, while simultaneously ensuring grid reliability. To ensure UVM's PEM method, the integrated system will undergo extensive simulation testing with large-scale hardware implementation for the bulk power grid and in industry-scale, microgrid environments.

• GRID DATA: Generating Realistic Information for the Development of Distribution and Transmission Algorithms (\$11 million)

- The GRID DATA program will fund the development of large-scale, realistic, validated, and open-access power system network models. These models will have the detail required to allow the successful development and testing of transformational power system optimization and control algorithms, including new optimal power flow (OPF) algorithms. Project teams will take one of two tracks to develop models. The first option is to partner with a utility to collect and then anonymize real data as the basis for a model that can be released publically. The second approach is to construct purely synthetic power system models. The program will also fund the creation of an open-access, self-sustaining repository for the storage, annotation, and curation of these power systems models, as well as others generated by the community.
- Example GRID DATA Project: The University of Illinois at Urbana-Champaign – "Synthetic Data for Power Grid R&D" – Champaign, IL (\$1 million). The University of Illinois at Urbana-Champaign, with partners from Cornell University, Virginia Commonwealth University, and Arizona State University will develop 10 open-source and synthetic transmission system models and associated scenarios that match the complexity of power grids. By utilizing statistics derived from real data, the team's models will have coordinates based on North American geography with network structure, characteristics, and consumer demand that mimics real grid profiles. Much of the developed software will be open source and available on the MATPOWER software suite as well as the GRID DATA repository.

• SHIELD: Single-Pane Highly Insulating Efficient Lucid Designs (\$31 million)

- The SHIELD Program aims to develop innovative materials that will improve the energy efficiency of existing single-pane windows in commercial and residential buildings. Technologies created through the SHIELD program seek to cut in half the amount of heat lost through single-pane windows in cold weather. These materials would improve insulation, reduce cold weather condensation, and enhance occupant comfort. The technologies could also produce secondary benefits, such as improved soundproofing, that will make retrofits more desirable to building occupants and owners. The program will focus on three technical categories: products that can be applied onto existing windowpanes; manufactured windowpanes that can be installed into the existing window sash that holds the windowpane in place; and other early-stage, highly innovative technologies that can enable products in the first two technical categories.
- Example SHIELD Project: NanoSD, Inc. "Retrofittable and Transparent Super-Insulator for Single-Pane Windows" – San Diego, CA (\$3 million).
 NanoSD, Inc. is developing a transparent, nanostructured film that can be applied onto existing single-pane windows to reduce heat loss. The team's material

features unique nanoshell structures that are tightly packed to create a strong thermal barrier. The team will apply a low-emissivity coating to further enhance the material's ability to insulate and incorporate materials to reduce abrasion and condensation. To enable cost-effective fabrication of the product, NanoSD will focus on incorporating all of these steps into a roll-to-roll manufacturing technique.

• MONITOR (Methane Observation Networks with Innovative Technology To Obtain Reductions) Test Site (\$3.5 million)

- In order to evaluate the performance of each MONITOR technology to locate and quantify fugitive methane emissions, the MONITOR Field Test Site will develop a representative test facility that simulates real-world natural gas operations at the wellpad and further downstream. Specifically, the MONITOR Test Site supports the operation of a multi-user field test site for MONITOR performers to validate performance under realistic use-case scenarios and meet the MONITOR program's required metrics related to localization, quantification, communications, and cost. Data generated during the field tests will demonstrate the performance capabilities of the technologies and could be used by the MONITOR performers to accelerate the commercialization and/or regulatory approval of their technologies.
- Example Monitor Test Site Project: Colorado State University "Test Facility and Proving Ground for ARPA-E MONITOR" – Fort Collins, CO (\$3.5 million). Colorado State University (CSU) will lead the development of a test site facility at CSU where MONITOR project teams can evaluate their methane sensing technologies. The CSU team will design, construct, and operate a test site that includes multiple sub-facilities simulating a broad range of natural gas production and transmission equipment and operations including: dry and wet gas production, midstream compression, metering and regulating stations, and underground pipelines. The site will feature controlled methane emissions that are realistic in location, frequency, duration, composition, and volume. The CSU site will be located outside of operating oil and natural gas basins allowing for near-complete control of background and onsite emissions. The CSU team includes experts in emissions measurements, natural gas systems testing, and atmospheric dispersion modeling.

• IONICS: Integration and Optimization of Novel Ion-Conducting Solids (\$37 million)

 Today's growing demand for electricity from carbon-free, renewable resources and for alternatives to petroleum as a transportation fuel has led to a strong desire for cost-effective and durable energy storage and conversion products. The projects that make up ARPA-E's IONICS program are paving the way for technologies that overcome the limitations of current battery and fuel cell products by creating high performance separators and electrodes built with solid ion conductors. The program will focus on developing new processing methods

and approaches to device integration to accelerate devices built with high performance ion-conducting solids to commercial deployment.

• Example IONICS Project: Washington University in St. Louis – "Reinforced AEM Separators Based on Triblock Copolymers for Electrode-Decoupled RFBs" – St. Louis, MO (\$2 million). The Washington University in St. Louis team will use readily available and inexpensive commercial polymers to create a membrane for use in redox flow batteries. The team will investigate possibilities with four types of membrane construction with the goal of achieving the high thermal, chemical, and mechanical stability necessary for use in applications like flow batteries that contain materials like acids. A highly charged nanopowder will be used to improve the conductivity of the membrane while simultaneously increasing its selectivity.

Table 2 on the following page summarizes ARPA-E's programs to date. A full list of the projects selected during FY 2016 can be found in Appendix I. Additional information related to these projects is on ARPA-E's website: <u>http://arpa-e.energy.gov</u>.

	TABLE 2: ARPA-E PROGRAMS TO DATE					
	PROGRAM NAME	NUMBER OF PROJECTS	FUNDING AMOUNT (\$ Million) ⁴			
	OPEN 2009	41	\$176			
	Batteries for Electrical Energy Storage in Transportation (BEEST)	12	\$39			
	Innovative Materials and Processes for Advanced Carbon Capture Technologies (IMPACCT)	15	\$41			
	Electrofuels	13	\$49			
	Agile Delivery of Electrical Power Technology (ADEPT)	14	\$38			
	Building Energy Efficiency Through Innovative Thermodevices (BEETIT)	17	\$39			
	Grid-Scale Rampable Intermittent Dispatchable Storage (GRIDS)	16	\$44			
	Plants Engineered to Replace Oil (PETRO)	10	\$56			
	High Energy Advanced Thermal Storage (HEATS)	15	\$39			
AMS	Rare Earth Alternatives in Critical Technologies (REACT)	14	\$40			
NG PROGRA	Green Electricity Network Integration (GENI)	15	\$44			
	Solar Agile Delivery of Electrical Power Technology (Solar ADEPT)	7	\$14			
EXIST	Methane Opportunities for Vehicular Energy (MOVE)	13	\$45			
	Advanced Management and Protection of Energy Storage Devices (AMPED)	14	\$34			
	OPEN 2012	66	\$179			
	Innovative Development in Energy-related Applied Science (IDEAS)	41	\$23			
	Robust Affordable Next Generation Energy Storage Systems (RANGE)	24	\$46			
	Reducing Emissions using Methanotrophic Organisms for Transportation Energy (REMOTE)	15	\$39			
	Modern Electro/Thermochemical Advancements for Light-metal Systems (METALS)	19	\$45			
	Full-Spectrum Optimized Conversion and Utilization of Sunlight (FOCUS)	14	\$37			
	Strategies for Wide Bandgap, Inexpensive Transistors for Controlling High Efficiency Systems (SWITCHES) & SBIR/STTR	14	\$35			

⁴ Funding levels shown in this chart are as of February 2017 unless otherwise stated. NEXTCAR, REFUEL, ROOTS, and ENLITENED project counts and funding amounts reflect information at the time of selection. Final number of projects and funding amounts are subject to change based on award negotiations.

	Reliable Electricity Based on ELectrochemical Systems (REBELS)	13	\$34
	Cycling Hardware to Analyze and Ready Grid-Scale Electricity Storage (CHARGES) ⁵	2	\$7
	Delivering Efficient Local Thermal Amenities (DELTA)	11	\$30
	Methane Observation Networks with Innovative Technology to Obtain Reductions (MONITOR)	12	\$36
	Accelerating Low-cost Plasma Heating and Assembly (ALPHA)	9	\$35
	Advanced Research In Dry cooling (ARID)	14	\$30
	GENerators for Small Electrical and Thermal Systems (GENSETS)	11	\$26
	Transportation Energy Resources from Renewable Agriculture (TERRA)	6	\$37
	Traveler Response Architecture using Novel Signaling for Network Efficiency in Transportation (TRANSNET)	5	\$15
	Micro-scale Optimized Solar-cell Arrays with Integrated Concentration (MOSAIC)	10	\$25
Project	GENerators for Small Electrical and Thermal Systems Small Business Innovation Research / Small Business Technology Transfer (GENSETS SBIR / STTR)	3	\$7
/ FY 2016 ection	OPEN 2015	41	\$125
5 FOA / Sel	Network Optimized Distributed Energy Systems (NODES)	12	\$33
FY 201:	Generating Realistic Information for the Development of Distribution and Transmission Algorithms (GRID DATA)	7	\$11
and ion	Single-Pane Highly Insulating Efficient Lucid Design (SHIELD)	14	\$31
016 FOA a ect Selecti	MONITOR Test Site	1	\$4
FY :	Integration and Optimization of Novel Ion-Conducting Solids (IONICS)	16	\$37
DA / oject n	Next-Generation Energy Technologies for Connected and Automated On-Road Vehicles (NEXTCAR)	11	\$34
2016 FC 2017 Pr election	Renewable Energy to Fuels Through Utilization of Energy-Dense Liquids (REFUEL)	16	\$35
FY: FY 2 S	Rhizosphere Observations Optimizing Terrestrial Sequestration (ROOTS)	10	\$35

⁵ The GENSETS SBIR/STTR, OPEN 2015, NODES, and GRID DATA FOAs were released in FY2015, with project selections announced in FY2016. The SHIELD, MONITOR Test Site, and IONICS FOAs were released in FY2016, with project selections also announced in FY2016. The NEXTCAR, REFUEL, ROOTS, and ENLITENED FOAs were issued in FY 2016, with project selections in FY 2017.

0.0

Department of Energy | September 2017

Energy-Efficient Light-Wave Integrated Technology Enabling Networks that Enhance Datacenters (ENLITENED)	9	\$25
Total To Date ⁶	640	\$1.7B

⁶ As of early February 2017 including estimated values for selected projects within the NEXTCAR, REFUEL, ROOTS, and ENLITENED programs.

IV. ARPA-E Energy Innovation Summit

The seventh annual ARPA-E Energy Innovation Summit took place February 29 to March 2, 2016 at the Gaylord National Convention Center at the National Harbor in Maryland. The Summit convened leaders from academia, business, and government to discuss the foremost energy issues, showcased cutting-edge energy technologies, and facilitated relationships to help move technologies into the market.

Throughout the three-day event, attendees also had the opportunity to explore the Technology Showcase, which featured ARPA-E awardees and a highly selective group of other companies, stakeholders, and research organizations. Many of the transformational energy technologies displayed in the Technology Showcase were demonstrated publically for the first time.

ARPA-E Energy Innovation Summit Highlights

- Over 2,000 registered attendees from across the United States and 25 countries
- Technology Showcase displaying more than 270 breakthrough energy technologies from ARPA-E awardees and other innovative companies
- Dynamic panel discussions and networking sessions that enabled participants to meet with ARPA-E Program Directors, global industry leaders, and energy technologists
- Over 80 expert speakers and keynote addresses, including leaders from government, business, and academia
- Attendance and comments by a bipartisan group of United States senators and representatives
- Announcement that as of early 2016, ARPA-E had recognized several notable accomplishments, including:
 - At least 36 ARPA-E project teams have formed new companies to advance their technologies
 - 60 ARPA-E project teams have partnered with other government agencies for further development
 - 45 ARPA-E project teams have attracted more than \$1.25 billion in private-sector follow-on funding.

V. Conclusion

In FY 2016, ARPA-E announced project selections for six focused programs and one open program. The programs created through these solicitations cover a wide range of technical areas:⁷

- IONICS: paving the way for technologies that overcome the limitations of current battery and fuel cell products;
- MONITOR Field Test Site: development of a simulated, but realistic natural gas test site for use by MONITOR Awardees;
- SHIELD: development of innovative window coatings and windowpanes that could significantly improve the energy efficiency of existing single-pane windows in commercial and residential buildings;
- GRID DATA: development of realistic, open-access models and data repositories to aid in improving the U.S. electric grid;
- NODES: development of technologies that coordinate load and generation on the grid to create a virtual energy storage system;
- OPEN 2015: the Agency's third open solicitation;
- GENSETS SBIR/STTR: development of generator technologies to enable more affordable and efficient residential CHP systems.

As directed by its statutory authorization,⁸ ARPA-E entered into a contract with the National Academy of Sciences in October 2014 to "conduct an evaluation of how well ARPA-E is achieving the goals and mission of ARPA-E." ARPA-E has and will continue to actively engage with the National Academies *ad hoc* committee preparing this report⁹.

As of February 2017, ARPA-E has invested over \$1.5 billion across more than 580 projects through 36 focused programs and three open funding solicitations (OPEN 2009, OPEN 2012, and Open 2015).¹⁰

http://sites.nationalacademies.org/PGA/step/ARPA-E_Evaluation/index.htm

⁷ The GRID DATA, NODES, OPEN 2015, and GENSETS SBIR/STTR FOAs were released in FY 2015, with project selections announced in FY 2016. The IONICS, MONITOR Field Test, and SHIELD FOAs were released in FY 2016, with project selections also announced in FY 2016.

⁸ Public Law 110-69, section 5012(k)(2007) as amended, which has been codified as 42 U.S.C. § 16538(l)
⁹ More information on the report being prepared by the National Academies is available on their website. As of February 2017, the National Academies expects the study to be published by June 2017.

¹⁰ This statement does not include selected projects which have not yet completed contracting as of early February, 2017 (i.e. several projects within the NEXTCAR, REFUEL, ROOTS, and ENLITENED programs).

At the 2016 ARPA-E Energy Innovation Summit, the Agency convened a diverse and influential group of energy experts and industry leaders focused on advancing the next generation of breakthrough energy technologies. The Summit brought together leaders with unique perspectives, experiences, and ideas with the shared goal of revolutionizing the American approach to energy innovation.

The statutory goals of ARPA-E are to enhance the economic and energy security of the United States through the development of technologies that reduce America's dependence on energy imports; reduce U.S. energy related emissions; improve energy efficiency across all sectors of the U.S. economy; and ensure the United States maintains a technological lead in the development and deployment of advanced energy technologies.

In FY 2016, ARPA-E Program Directors provided awardees with technical guidance and developed new programs by engaging diverse communities to identify gaps where investment by ARPA-E could lead to transformational technologies enabling entirely new ways to generate, store, and use energy. The ARPA-E technology-to-market program provides practical training and business information to equip awardees with a clear understanding of market needs to guide technical development.

VI. Appendix I: Projects Selected in FY 2016

Data below is as of the dates on which project selections were publicly announced:

October 7, 2015 (GENSETS SBIR/STTR); November 23, 2015 (OPEN 2015); December 11, 2015 (NODES); January 15, 2016 (GRID DATA); May 18, 2016 (SHIELD & SHIELD SBIR/STTR); June 10, 2016 (MONITOR Field Test Site); and September 13, 2016 (IONICS).

Additional information on these projects is available on the ARPA-E website: <u>http://arpa-e.energy.gov</u>.

PROGRAM	LEAD ORGANIZATION	PROJECT TITLE	LOCATION	ARPA-E FUNDING ¹¹ (Million \$)
GENSETS SBIR/STTR	Sencera Energy, Inc.	Kinematic Flexure-Based Stirling-Brayton Hybrid Engine Generator for Residential CHP	Charlotte, NC	\$1,754,452
GENSETS SBIR/STTR	Air Squared, Inc.	A High Efficiency SACI 1kW Generator with Organic Rankine Cycle Waste Heat Recovery	Broomfield, CO	\$2,745,000
GENSETS SBIR/STTR	Mohawk Innovative Technology, Inc.	High-Speed Microturbine with Air Foil Bearings for Residential CHP	Albany, NY	\$2,500,000
OPEN 2015	Case Western Reserve University	Data Analytics for Virtual Energy Audits and Value Capture Assessments of Buildings	Cleveland, OH	\$1,433,281
OPEN 2015	University of California, Santa Barbara	High-Efficiency, Low Cost Laser-Based Solid State Lighting	Santa Barbara, CA	\$2,372,724
OPEN 2015	The Mackinac Technology Company	Retrofit System for Single Pane Window Efficiency	Grand Rapids, MI	\$2,500,000
OPEN 2015	University of Colorado Boulder	Paintable Heat-Reflective Coatings for Low-Cost Energy Efficient Windows	Boulder, CO	\$3,955,218
OPEN 2015	Boston Electrometallurgical Corporation	Revolutionary Process for Low- Cost Titanium	Natick, MA	\$2,279,027

¹¹ Figures represent funding amounts at the time of project announcements. Final amounts are subject to change based on award negotiations. Please see the ARPA-E's website for updated information: <u>http://arpa-e.energy.gov/</u>.

OPEN 2015	Electric Power Research Institute, Inc.	Directional Solvent Extraction – A Low Temperature, Non- Membrane Water Desalination Process using Waste Heat	Palo Alto, CA	\$1,500,000
OPEN 2015	INFINIUM, Inc	Ultra-Low Energy Magnesium Recycling for New Light- Weight Vehicles	Natick, MA	\$2,850,000
OPEN 2015	Oak Ridge National Laboratory	New High Temperature, Corrosion-Resistant Cast Alloy For Operation in Industrial Gaseous Environments	Oak Ridge, TN	\$3,900,000
OPEN 2015	RedWave Energy, Inc	High Speed Diode and Rectenna for Waste Heat to Electricity Harvesting	Glen Ellyn, IL	\$3,381,448
OPEN 2015	Stanford University	High Efficiency Wafer-Scale Thermionic Energy Converters	Stanford, CA	\$3,636,000
OPEN 2015	Gas Technology Institute	Reactor Engine	Des Plaines, IL	\$3,000,000
OPEN 2015	Princeton Optronics	Low Power Consumption, Ultra-High Speed VCSELs for Optical Communication	Trenton, NJ	\$1,120,000
OPEN 2015	University of California, Santa Barbara	High Efficiency Quantum-Dot Photonic Integrated Circuit Technology Epitaxially Grown on Silicon	Santa Barbara, CA	\$1,935,325
OPEN 2015	Accio Energy, Inc.	EHD Innovative Low-Cost Offshore Wind Energy	Ann Arbor, MI	\$4,500,000
OPEN 2015	University of Virginia	50 MW Segmented Ultralight Morphing Rotors for Wind Energy	Charlottesville, VA	\$3,569,580
OPEN 2015	National Renewable Energy Laboratory	Ultrahigh Efficiency Photovoltaics at Ultralow Costs	Golden, CO	\$5,160,000
OPEN 2015	Ocean Renewable Power Company	Tidal Power: Deployment and Retrieval System for Cross- flow Hydrokinetic Turbines	Portland, ME	\$2,248,223
OPEN 2015	Cummins Corporate Research & Technology	Efficient Knock Suppression in Spark Ignited Engines	Columbus, IN	\$2,073,235
OPEN 2015	Ceramatec, Inc	Electrochemical Ammonia Synthesis for Grid Scale Energy Storage	Salt Lake City, UT	\$2,350,000

				1
OPEN 2015	Dioxide Materials, Inc.	High Efficiency Alkaline Water Electrolyzers for Grid Scale Energy Storage	Boca Raton, FL	\$2,000,000
OPEN 2015	Oak Ridge National Laboratory	Hydration-Free Conductive Membranes Based on Two Dimensional Materials	Oak Ridge, TN	\$2,800,000
OPEN 2015	Iowa State University	Low Cost, Safe, and Efficient All Solid State Sodium Batteries for Grid-scale Energy Storage and Other Applications	Ames, IA	\$2,949,872
OPEN 2015	General Electric Company, GE Global Research	Charge-Balanced SiC FETs for Breakthrough Power Conversion	Niskayuna, NY	\$2,561,606
OPEN 2015	Tibbar Technologies	Plasma-based AC-DC Transformer for HVDC Transmission	Los Alamos, NM	\$3,500,000
OPEN 2015	Pacific Northwest National Laboratory	High Performance Power-grid Optimization (HIPPO) for Flexible and Reliable Resource Commitment Against Uncertainties	Richland, WA	\$3,120,249
OPEN 2015	University of Tennessee, Knoxville	A Smart and Flexible Microgrid with a Low-cost Scalable Open-source Controller	Knoxville, TN	\$2,400,000
OPEN 2015	ProsumerGrid, Inc	Distribution System Operator Simulation Studio	Atlanta, GA	\$3,000,000
OPEN 2015	Vanderbilt University	Resilient Information Architecture Platform for the Smart Grid	Nashville, TN	\$3,500,000
OPEN 2015	Newton Energy Group, LLC	Coordinated Operation of Electric and Natural Gas Supply Networks: Optimization Processes and Market Design	Boston, MA	\$2,904,745
OPEN 2015	Achates Power, Inc.	Gasoline Compression Ignition Medium Duty Multicylinder Opposed Piston Engine Development	San Diego, CA	\$9,002,986
OPEN 2015	University of Michigan	Split Micro-hybrid Boosting Enabling Highly Diluted Combustion	Ann Arbor, MI	\$1,923,845
OPEN 2015	Corning Incorporated	Roll-to-Roll Processing Ceramic Battery Electrolyte	Corning, NY	\$3,102,359
OPEN 2015	University of Michigan	Transitioning Advanced Ceramic Electrolytes into Manufacturable Solid-State EV Batteries	Ann Arbor, MI	\$3,500,000

OPEN 2015	Proton Energy Systems	Dual Mode Energy Conversion and Storage Flow Battery	Wallingford, CT	\$2,500,000
OPEN 2015	Pajarito Powder, LLC	Precious Metal Free Regenerative Hydrogen Electrode for Fuel-Cell Vehicles	Albuquerque, NM	\$2,790,000
OPEN 2015	Oregon State University	Converting Biogas to Liquid Fuels by Low Energy Electrical Corona Discharge Processes	Corvallis, OR	\$2,256,677
OPEN 2015	Starfire Energy	Ammonia Synthesis for Fuel, Energy Storage, and Agriculture Applications	Aurora, CO	\$1,424,691
OPEN 2015	Marine BioEnergy, Inc	Disruptive Supplies of Affordable Biomass Feedstock Grown in the Open Ocean	San Diego, CA	\$2,146,988
OPEN 2015	Texas A&M AgriLife Research	Developing Ground Penetrating Radar (GPR) for Enhanced Root and Soil Organic Carbon Imaging: Optimizing Bioenergy Crop Adaptation and Agro-ecosystem Services	College Station, TX	\$4,600,000
OPEN 2015	University of Illinois at Urbana-Champaign	Novel Technologies to Solve the Water Use Problem of High Yielding C4 Bioenergy and Bioproduct Feedstocks	Urbana, IL	\$4,995,967
OPEN 2015	University of Tennessee, Knoxville	SynPLASTome 2.0: Synthetic Plastid Genome to Reprogram Chloroplast Function for the Production of Fuels and Chemicals	Knoxville, TN	\$3,500,000
NODES	University of Vermont	Packetized Energy Management: Coordinating Transmission and Distribution	Burlington, VT	\$1,537,904
NODES	University of California: San Diego	Distributed Grid Control of Flexible Loads and DERs for Optimized Provision of Synthetic Regulating Reserves	La Jolla, CA	\$2,338,485
NODES	Arizona State University	Stochastic Optimal Power Flow for Real-Time Management of Distributed Renewable Generation and Demand Response	Tempe, AZ	\$3,000,000
NODES	Stanford University	Open and Scalable Distributed Energy Resource Networks	Stanford, CA	\$3,500,000

NODES	General Electric Global Research	Synthetic Reserves from Aggregated Distributed Flexible Resources	Niskayuna, NY	\$3,900,000
NODES	National Renewable Energy Laboratory	Real-time Optimization and Control of Next-Generation Distribution Infrastructure	Golden, CO	\$3,900,000
NODES	Pacific Northwest National Laboratory	Multi-scale Incentive-Based Control of Distributed Assets	Richland, WA	\$2,700,000
NODES	Regents of the University of Minnesota	A Robust Distributed Framework for Flexible Power Grids	Minneapolis, MN	\$2,950,000
NODES	Northwestern University	A Novel Hierarchical Frequency-Based Load Control Architecture	Evanston, IL	\$2,692,845
NODES	DNV GL	Enabling the Internet of Energy through Network Optimized Distributed Energy Resources	Chalfont, PA	\$2,150,000
NODES	National Rural Electric Cooperative Association	GridBallast - Autonomous Load Control for Grid Resilience	Arlington, VA	\$1,335,507
NODES	Eaton Corporation	Cloud-Based Cascaded Multi- rate DER Control for Synthetic Regulating Reserves	Menomonee Falls, WI	\$3,311,532
GRID DATA	National Renewable Energy Laboratory	SMARtDaTa: Standardized Multi-Scale Models of Anonymized Realistic Distribution and Transmission Data	Golden, CO	\$2,300,000
GRID DATA	The University of Michigan	High Fidelity, Year Long Power Network Data Sets for Replicable Power System Research	Ann Arbor, MI	\$1,418,845
GRID DATA	University of Illinois at Urbana-Champaign	Synthetic Data for Power Grid R&D	Champaign, IL	\$1,028,325
GRID DATA	Pacific Northwest National Laboratory	Data Repository for Power System Open Models with Evolving Resources (DR POWER)	Richland, WA	\$1,500,108
GRID DATA	GridBright, Inc.	A Standards-Based Intelligent Repository for Collaborative Grid Model Management	Alamo, CA	\$1,697,292
GRID DATA	Pacific Northwest National Laboratory	Sustainable Data Evolution Technology for Power Grid Optimization	Richland, WA	\$1,484,922
GRID DATA	University of Wisconsin - Madison	EPIGRIDS: Electric Power Infrastructure & Grid Representations in Interoperable Data Sets	Madison, WI	\$1,866,788

SHIELD	Argonne National Laboratory	Self-Assembled Nanocellular Composites with Super Thermal Insulation and Soundproof for Single-Pane Windows	Lemont, IL	\$3,102,671
SHIELD	Arizona State University	Single-Pane Windows with Insulating Sprayed Particulate Coatings	Tempe, AZ	\$2,197,800
SHIELD	Aspen Aerogels, Inc.	Aerogel Insulated Pane as a Replacement for Panes in Single-Pane Windows	Northborough, MA	\$2,751,377
SHIELD	Eclipse Energy Systems, Inc.	Eclipse Shield	Saint Petersburg, FL	\$1,249,791
SHIELD	Oak Ridge National Laboratory	Low Cost, Multilayer, Highly Transparent and Thermally Insulating Hybrid Silica- Polymer Film	Oak Ridge, TN	\$2,540,000
SHIELD	PARC, a Xerox Company	Scalable Transparent Thermal Barriers for Single-Pane Window Retrofits	Palo Alto, CA	\$2,887,312
SHIELD	Regents of the University of California, Los Angeles	THermally INsultating traNsparEnt barrieR (THINNER) Coatings for Single-Pane Windows	Los Angeles, CA	\$1,200,000
SHIELD	SRI International	Window Retrofit Applique using Phonon engineering (WRAP)	Menlo Park, CA	\$2,968,501
SHIELD	University of California, San Diego	"Thinner Than Air": Polymer- Based Coatings of Single-Pane Windows	La Jolla, CA	\$1,400,000
SHIELD	University of Colorado Boulder	Advancing Insulation Retrofits from Flexible Inexpensive Lucid Materials (AIR FILMs) for Single-Pane Windows	Boulder, CO	\$1,800,000
SHIELD	Virginia Commonwealth University	Fabrication of Inexpensive, Transparent Aerogel Panes	Richmond, VA	\$859,891
SHIELD SBIR/STTR	IR Dynamics, LLC	Dynamic IR Window Film to Improve Window Energy Efficiency	Santa Fe, NM	\$1,950,000
SHIELD SBIR/STTR	NanoSD, Inc.	Retrofittable and Transparent Super-Insulator for Single-Pane Windows	San Diego, CA	\$3,000,000
SHIELD SBIR/STTR	Triton Systems, Inc.	Energy Efficient Window Thermal Control	Chelmsford, MA	\$3,224,500
MONITOR Field Test Site	Colorado State University	Test Facility and Proving Ground for ARPA-E Monitor	Fort Collins, CO	\$3,533,836

IONICS	24M	Large Area Lithium Electrode Sub-Assemblies (LESAs) Protected by Self-Forming Microstructured Polymer- Inorganic Single-Ion Conducting Composites	Cambridge, MA	\$3,500,000
IONICS	Ionic Materials	Novel Polymer Electrolyte for Solid State Lithium Metal Battery Technology	Woburn, MA	\$3,000,000
IONICS	Iowa State University	Development and Testing of New, High–Li+ Ion Conductivity Glassy Solid Electrolytes for Lithium Metal Batteries	Ames, IA	\$2,250,000
IONICS	Oak Ridge National Laboratory	Metastable and Glassy Ionic Conductors (MAGIC)	Oak Ridge, TN	\$3,000,000
IONICS	Pennsylvania State University	Cold-Sintering Composite Structures for Solid Lithium Ion Conductors	University Park, PA	\$1,000,000
IONICS	PolyPlus Battery Company	Flexible Solid Electrolyte Protected Li Metal Electrodes	Berkeley, CA	\$5,250,000
IONICS	Sila Nanotechnologies	Melt-Infiltration Solid Electrolyte Technology for Solid State Lithium Batteries	Almeda, CA	\$1,000,000
IONICS	University of Colorado Boulder	Flash Sintering System for Manufacturing Ion-Conducting Solids	Boulder, CO	\$1,000,000
IONICS	Colorado School of Mines	Hybrid Polyoxometalate Membranes for High Proton Conduction with Redox Ion Exclusion	Golden, CO	\$1,564,386
IONICS	United Technologies Research Center	Synergistic Membranes and Reactants for a Transformative Flow-Battery System	East Hartford, CT	\$2,712,559
IONICS	University of Colorado Boulder	Anion Channel Membranes	Boulder, CO	\$3,000,000
IONICS	Washington University in St. Louis	Reinforced AEM Separators Based on Triblock Copolymers for Electrode-Decoupled RFBs	St. Louis, MO	\$2,000,000
IONICS	3M Company	Low Cost, Durable, Commercially Viable Polymeric Anion Exchange Membranes	St. Paul, MN	\$2,300,000
IONICS	Rensselaer Polytechnic Institute	Channel Engineering of Hydroxide Ion Exchange Polymers and Reinforced Membranes	Troy, NY	\$2,245,327

Department of Energy | September 2017

IONICS	University of Delaware	Highly Conductive, Stable and Robust Hydroxide Exchange Membranes Based on Poly (Aryl Piperidinium)	Newark, DE	\$1,800,000
IONICS	University of California, San Diego	Self-Forming Solid-State Batteries	La Jolla, CA	\$1,000,000